Glycine betaine transmethylase mutant of Pseudomonas aeruginosa.
نویسندگان
چکیده
The gene for glycine betaine transmethylase (gbt) was identified in Pseudomonas aeruginosa strain Fildes III by biochemical, physiological, and molecular approaches. Based on sequence analysis, the knockout gene corresponded to an open reading frame (ORF) named PA3082 in the genome of P. aeruginosa PAO1. The translated product of this ORF displayed similarity to transferases of different microorganisms. Mutation in gbt blocked the utilization of choline and glycine betaine as carbon and nitrogen sources.
منابع مشابه
Choline Catabolism to Glycine Betaine Contributes to Pseudomonas aeruginosa Survival during Murine Lung Infection
Pseudomonas aeruginosa can acquire and metabolize a variety of molecules including choline, an abundant host-derived molecule. In P. aeruginosa, choline is oxidized to glycine betaine which can be used as an osmoprotectant, a sole source of carbon and nitrogen, and as an inducer of the virulence factor, hemolytic phospholipase C (PlcH) via the transcriptional regulator GbdR. The primary objecti...
متن کاملLiberate and grab it, ingest and digest it: the GbdR regulon of the pathogen Pseudomonas aeruginosa.
The compatible solute glycine betaine is a powerful osmostress protectant, but many microorganisms can also use it as a nutrient. K. J. Hampel et al. (J. Bacteriol. 196:7-15, 2014) defined a regulon in the notorious pathogen Pseudomonas aeruginosa that comprises modules for the harvest and import of the glycine betaine biosynthetic precursor choline and its subsequent catabolism to pyruvate. Th...
متن کاملTranscriptional Regulation of Carnitine Catabolism in Pseudomonas aeruginosa by CdhR
The common environmental bacterium and opportunistic pathogen Pseudomonas aeruginosa encodes diverse metabolic pathways and associated regulatory networks allowing it to thrive in these different environments. In an effort to understand P. aeruginosa metabolism and detection of host-derived compounds, we previously identified CdhR and GbdR as members of the AraC transcription factor family that...
متن کاملIdentification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism.
Glycine betaine (GB), which occurs freely in the environment and is an intermediate in the catabolism of choline and carnitine, can serve as a sole source of carbon or nitrogen in Pseudomonas aeruginosa. Twelve mutants defective in growth on GB as the sole carbon source were identified through a genetic screen of a nonredundant PA14 transposon mutant library. Further growth experiments showed t...
متن کاملGlycine betaine catabolism contributes to Pseudomonas syringae tolerance to hyperosmotic stress by relieving betaine-mediated suppression of compatible solute synthesis.
Many bacteria can accumulate glycine betaine for osmoprotection and catabolize it as a growth substrate, but how they regulate these opposing roles is poorly understood. In Pseudomonas syringae B728a, expression of the betaine catabolism genes was reduced by an osmotic upshift to an intermediate stress level, consistent with betaine accumulation, but was increased by an upshift to a high stress...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 184 15 شماره
صفحات -
تاریخ انتشار 2002